

Enabling safer voyages with data and cloud connectivity IMO – Maritime Safety Committee – June 5th 2023

Presenter

Jussi Siltanen

Lead, Go to Market and Product Marketing at NAPA Safety Solutions

At NAPA since 2017

Connectivity at Sea – The big picture

Revolutionizing stability management with data on the Cloud

Practical Application with real examples

Future with Cloud Connectivity

Discussion & Questions

Connectivity at sea so that ships don't disappear beyond the horizon

- Just as any modern office or production site ashore, new built ships depend on digital solutions that require connectivity.
- The benefits of connectivity at sea are taking over the cost. These include, amongst others, transparency, crew welfare, and most important of all safety.
- Fleet Operations Centres, emergency response services and ports require access to real-time ship data to ensure safe operations and appropriate actions in case of distress.

When you transfer ship data to a cloud platform

- Increased situational awareness on shoreside, monitoring safety and operations in real-time
- Shared overview onboard and onshore Readily available for key operations with constant updates for better coordination and efficiency
- Standardised and integrated data pool on one platform
- Comprehensive fleet operational profile Collect and combine data from many onboard systems with API (Application Programming Interface).
- **Tamper-proof** system backup and historical data storage
- **Building block** for semi-autonomous decision support systems

Real Impact on Ship Operations with Data on the Cloud

How this translates to daily onboard and onshore operations

Illustrated with real onboard and onshore application

Example 1: Ship stability and safety management

Data-driven safety and optimisation with cloud solution

Stability data shared in real-time

<u>The stability computer connects to the cloud</u> <u>platform</u> to revolutionize how ship operators manage daily vessel stability from the shoreside.

- Live situational awareness, monitoring and faster response with color-coded stability status overview.
- Comprehensive fleet operational profile by combining data with other sources such as AIS, e-Logbook and third-party systems.
- Ultimate voyage planning and deadweight management with simulations and data on cloud.
- Benchmarking operational trends across the fleet to spot optimization opportunities.
- Historical data as feedback for better efficiencies and ship design.

MONITOR AND ANALYZE YOUR SHIPS' OPERATIONAL, TECHNICAL, AND SAFETY PERFORMANCE

\ominus NAPA Fleet Intelligence : Emergency

TIME & DATE				-		12-075			L		
	Entry displayed	00.00		All the second s	Latest A	dS entry					
	2021-05	-09 06:	03 UTC	4 minutes a	go -						
AIS DATA		ета •									
LOCATION	sog	cog			Longitude		Movement				
	17.8 kn	227	148° (00° 26.3' N	1 001	11.9 E	Unde	rway			
STABILITY (CALCULATED)	Heel Trin	n	Mid draft	GMr	GM _{req}						
	0.0° F	0.08 m	8.61 m	3.20 m	2.56 m	8					
FLOODING	Flooded WTCs	Open doors	Flood water	Candition	Survivability	Vulnerability					
	0	0	0.0 m³	Intact	-	Green					
WEATHER	Wind speed	Direction									
	105.1 kn	195°									
Actual state	06:03										
FLOATING POSITION FROM SENSORS DRA			DRAF	RAFTS CORRECTED AT MARKS (EXTREME)				CALCULATED FLOATING POSITION			DRAFTS AT
Heel	Trim		Aft	Mid	đ	Fwd		Heel	Trim	Deflection	Aft
P 0.1°	F 0.20 m							0.0 °	F 0.08 m	0.00 m	8.57
			7.5	51 m 7.	.61 m	7.71 m					8.57
											8.57

Example 2: Emergency Preparedness and Response

Monitor and reduce everyday risk; respond faster to emergencies with precision.

Faster response to emergencies

To respond faster and with precision, the shore must automatically get alerted of the conditions onboard, saving the crew's crucial time to focus on action-taking instead of communication with ERS.

- Exact situation awareness with Vessel TRIAGE categorization, if damaged.
- Decision support with dynamic survivability prediction on a timeline.
- Special advisory cards for handling flooding.
- Live condition updates to shoreside, as-it-happens on board.
- Faster response based on actual damage information shared with Emergency Response Service (ERS).

SAVING TIME ONBOARD TO EMERGENCY MANAGEMENT INSTEAD OF COMMUNICATION WITH ERS

Faster response at shoreside

Emergency response services (ERS) can at any time download new stability situation files and analyze, without depending on onboard input.

- Stability related data in the cloud gives time-saving potential onboard for gathering data to be sent ashore
- This will in-turn enable emergency service to deliver advice faster response

Example 3: Logbook data used for shipping monitoring

Data-driven safety and optimisation with cloud solution

Industry drivers to Electronic Logbooks?

Regulatory changes and Flag approval for using electronic logbooks Stricter data reporting requirements

 \mathcal{Z}

Need for easier data handling and management

Recent changes around electronic logbook regulation

IMO Resolutions:

- A.916(22) Navigation related record keeping
- A.1052(27) Port State Control procedure
- MSC.333(90) Voyage data recorder
- MEPC.312(74) Guidelines for the use of electronic record books under MARPOL (and amendments to MEPC.314(74), MEPC.316(74) and MEPC.317(74))

The use of electronic logbooks is accepted by many major flag administrations

"It is recognized that the ERB allows ships to utilize available technology to reduce administrative burdens and contribute to the onboard environmental initiatives"

IMO - MEPC

Going beyond mandatory entries

Electronic logbook solutions create a massive data pool

1. Collects data from numerous sources:

- Manual entry
- Automation and navigation signal, plus third-party systems
- Calculated data: distances, average speed, wind speed.
- Fleet-wide log entries across all logbooks
- Other onboard systems

2. API option for fetching all this data to third-party systems.

Shoreside Data: Already being used

Cloud solutions can generate specialized reports:

- ESG Reports
- Technical Performance Reports
- Safety compliance ensured with digital records (drills, permit to work, etc.)
- Environmental reports like MRV / DCS / CII Reports

\ominus NAPA Fleet Intelligence		Logbook				
LOGBOOK PARAMETERS	5					
Select Ships	< [«« « <mark>1</mark> 2 3 4	5 6 7 8 9 1	0 11 12 13 14 15	16 17 18 19	20
OCEAN EMERALD II		SHIP NAME	LOCAL TIME	LOGBOOK ENTRY		LO
Select logbook date range						
2021-04-01 2021-09-10		Ocean Emerald II	2021-06-02 00:00 (+09:00)	Deck Compa&mpass Error Error Log	Calculation	Mil
Select Books		Mag Error -179.82 deg, 0	Gyro Error -181.42 deg, Var	r -6.2 deg, Dev -173.62 deg.		
Compass Error Log		Latitude	30° 15' 3" N	Gyro 2 heading	201.6 deg	
Search books name		Longitude	128° 42' 8" E	Observed Bearing	201.6 deg	
Select all		Observations possible today?	Yes	True Bearing	20.18 deg	
Compass Error Log		Magnetic Heading	200 deg	Gyro Error	-181.42 deg	
Deck				-179.82 deg		
Engine Engine		Active Gyro heading	201.6 deg			
Environmental Log		Gyro 1 heading	201.8 deg			
GMDSS						
North Star record book		Ocean Emerald II	2021-06-02 04:00 (+09:00)	Deck Compass Error Calculation Error Log		
		Mag Error 1.6 deg, Gyro	Error 0.4 deg, Var -5.7 deg	, Dev 7.3 deg.		
Show also Unapproved Entries		Latitude	28° 58' 40" N	Gyro 2 heading	198.9 deg	
		Longitude	128° 13' 44" E	Observed Bearing	198.9 deg	
Show also Deleted Entries		Observations	Yes	True Bearing	199.3 deg	
Show only Entries with attachments		possible today?		Gyro Error	0.4 deg	
		Magnetic Heading	197.7 deg		164-	

Cyber security

Industry Requirements

- Considering and managing security is a requirement for all shipping companies today
- Systems and networks should be designed for cyber security
- Onboard computer-based systems must consider the entire lifecycle of the software

- Latest programming technologies and components
- Encrypted data and communications
- Electronic signatures
- Continuously maintained security patches released for maintenance agreement customers

What's coming up: More data, deeper insights, higher efficiencies

Combining data between different sources

Digital twin giving feedback for better ship design and safety

More detailed simulations with more precise and real data þ

Continuous cyber resilient data infrastructure

THANK YOU

Jussi Siltanen Lead, Go to Market and Product Marketing NAPA Ltd

jussi.siltanen@napa.fi

Discussion & questions

